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METHOD OF FICTITIOUS ABSORPTION IN PLANE CONTACT PROBLEMS 
OF THE THEORY OF ELASTICITY IN THE PRESENCE OF ADHESION* 

V-A. BAHESHKO and O.D. PRIAKHINA 

A method proposed for the solution of dynamical contact problems in the absence of 
friction /l/ is extended to the case of total adhesion. In contrast to other ap- 
proaches to the solution of the problems mentioned /2-51, this method permits 

efficient description of the behavior of the contact stresses in both the inner 

part and in the neighborhood of the edges. We note that utilization of this method 
in the case of a system of integral equations would require significant improvement 
in the approach elucidated in /I/. 

1. A number of plane contact problems of the theory of elasticity on the vibration of a 
stamp rigidly adherent to an elastic half-space, a layer, or a layered medium, reduces to a 
system of integral equations in matrix form 

il.11 

q(s)= (qr(.+q2(+)), 

Here ql(s), @ (5) are, respectively, the tangential and normal contact stresses fr(~),~~(.z) 
are given amplitudes of the tangential and normal displacements of points under the stamp, 2a 
is the width of the stamp. The elements R,(u) (m,n = 1, 2) of the matrix R(U) are associated 
with the elements of the real matrix K (u) by the relationships 

R mm tu) = Km (JJ)> R,, (4 = -R,, (u) = iK,, (4 

The functions K,,(n) are regular everywhere on the real axis with the exception of identical 
poles for all these functions u r=: "&pk (k = 1, 2. _..( II). The diagonal elements K,,(u) are even, 
fc,,(u) is an odd function. For j u/- 00 the functions li,, (ZL) have the following asymptotic 
representation 

K,, (u) = c \ u j-’ II + 0 (u-‘)I. c > ) b ) 
K,, (EL) := bu-’ [1 + 0 (u-+)1 

The location of the contour u is dictated by the principle of ultimate absorption and is deter- 
mined in conformity with the rules set up in /bf. 

For the properties of the kernels mentioned, the system of integral equations (1.1) is 
uniquely solvable in .&(--a,a),a > 1. Uniqueness criteria were determined in /6,7/. 

We represent R(u) as the product of two matrices 

R (U) I: s (U)ri (u) 

so that the behavior of the elements s,,, of the matrix S(rc)at infinity would agree with the 
behavior of the corresponding elements r,, of the matrix R(u). Evidently, the matrix = (uf 
with real elements, associated with D(U) by the relationships 

n mm=s~mt rL*=is1z, r12r=--inzr (1.2) 

will then possess the property 

n(u)=I+O@-k), k>O, In/--- 11.3) 

Here the matrix I is the unit, while the matrix 0 has elements that decrease as a power 
at infinity. 
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We select s,,(u) in the following form 

(1.4) 

B is a parameter whose selection will be discussed below. 
To construct the approximate solution, the matrix X(U) (and therefore Il (~)as well) is 

approximated by the matrix I~ (u) with rational elements from the condition of nearnessofits 
elements in absolute value to the corresponding elements of n(u)with a given degree of ac- 
curacy. According to the theorem set up in /7/, this assures the nearness of the solutionsof 
systems of equations with kernels described by the matrices X(U) and z,(u). 

As a result of approximating the elements of the matrix n(u) by rational functions by 
using Bemshtein polynomials, they can be represented as 

n">Ffi,(u' - Z::,,)(UZ -pry- (1.5) 

n-1 
x,,=u 

L! @ 
'--ZLI) *I!! (U' - PrY. m#n 

Here z~,,,,, and pt are, respectively, zeroes and poles of elements of the matrix n (4 
lying above the contour U. 

After the approximation, the elements x,,,,, evidently possess the property (1.3) as before. 
The approximation of the inverse matrix is constructed analogously. Let us note that elements 
of the inverse matrix II-' are related to the elements of the real matrix X-'(U) by 

Ij;lm = x;L, n;. = -in;:,, n;: = ini: (1.6) 

We later need the following representations of the matrices X(U) and n-'(U): 

II (u) = I +- h (IL), II-’ (u) = 1 + p(u) (1.7) 

The elements of the matrices II(U) and P(U) have the form 

h “l”, = 
,$, d,,, (~a- pi*)-*, h,, = u i$l (u* - Pi’)-’ Qkn, m # * 

QL=ri (P,'- Z:mm) ii (Pt *- CkT’ 
k=l :a; 
,I-, 

d,, = 11 (p,’ -- Zkn) ri (PI* - I'k2)-'q m+n 
*=, :I: 

,&“, ? fi fib, (US - ;j’)-‘; pm” = II ii BL” (u2 -cl?!-‘, mfn 
j-1 l-=1 

” 71 

Here rlNln and ck are, respectively, zeroes and poles of elements of the inverse matrix 

lying above the contour IJ, where all the elements ~7:~~ have the same pole. 

2. Applying the method from /8/, we seek the solution of the matrix integral equation 

(1.1) in .&(--a, a), CL > 1 in the form 

so that the functionals 
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s(x)e *‘*k%!z = 5 cp (x) efiPk*dx, 12 = 1, 2, . . . , n 

-0 -0 

would agree (the & have been determined earlier). This same functional of the inknownvector 
function q,(r) equals zero. 

We take a system of delta functions with carriers at the points xk = f yk as components 
of the vector T(X), where y, are points separating the interval (0, a) into equal segments 

~(&$lck~(Z-~k). ck = {cl,, CPk} (2.2) 

(ctx, $1 are constants to be determined). 
We introduce the new unknown vector function I(s) by the relationship 

Inserting (2.1), (2.2) into (1.11, we arrive at the following integral equation 

_f k.lr-:)t(F)d~=f(x)-k~ Ckk(X-- rk) 

(2.3) 

(2.4) 

k,(s) =& [ S(u)e+xdu 
-co 

The elements s,, of the matrix S(u) are given by (1.4). 
Therefore, the system of integral equations of the dynamical contact problem (1.1) was 

reduced to a matrix integral equation of the static contact problem with matrix functions S(U) 
whose elements have no singularities on the real axis. 

Without spoiling the generality we set 

F (2) =E (dle-‘~“, &e-iW) (2.5) 

Let t,(r) be the solution of (2.4) with the right side (2.51, and t,*(z)the solution cor- 
responding to the right side 

f(5)=(C*~e-irlx,CZLe-lm) 

Then the solution t(z) of the integral equation (2.4) and the Fourier transform of this 
solution will be obtained in the form 

Here 

(2.6) 

(2.7) 

(2.0) 

S-’ (u) is the matrix inverse to S (u),T,* @),To (u),T (u) 
t,* (z), t,, (5) and t (1) , respectively. 

are Fourier transforms of the vector 
functions 

We find the unknown vector ei; by using a lemma from /8/ according to which the following 
identity holds 

T (+- &) zs 0. k = 1, 2, . ., It (2.9) 
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where T(u)is given by (2.7), and ih. were determined in Sect.1. The relar_i<xlsh 11"; i.'. .d <,rt 
an algebraic system of order 4n to determine the 4n c0nstant.s c,. 

We determine the unknown vector-function g,, (I) from (2. .I! 

and we obtain the solution of (1.1) by usinq (2.11, (2.2) and (2.10), as 

(.:. Id)1 

(?.lLI 

3. The solution CO(r) can be constructed by the factorization method /4/. In this cclse, 
the matrix function S(~)must be factored, ~.e., represented ir. the form 

5(u)=:C_(u)D,(u)= hlt(U)N (U) (3.1; 

The matrices D+(u) and M, (1~) have elements and determinants that are regular above tt:e 

contour 0. are continuous on it, where the determinxts have no zeroes in this domain. Sim- 
ilarly for C_(u), N_(u) in the domain below the contour (1. The elements of all the matrices 
in the domains of regularity decrease at InfinlEy. 

Factoring of the S(U) from (3.1) is accomplished explicitly :n conformitywiththegeneral 

theorems in /g/. The contour IJ agrees in this cdsf with the real axis. The elements of the 
matrices C_ (IL), I)+ (u) M_ (IL). !‘J_ (IL) have the fom 

The components TO, (u) of the vector T,(u) are obtained by applying the above method, in 

the form 
.I 

~,1(o)-=2;1~n,s~~(r~)6(11-l.i-L~~-- ['\~k.(I<).l/;; (qj)<"a"' -qJi -- K3.S) 

a.=, 1 ,--I 
11 .- ‘1, 

I)p, (u) (‘>; (rlj) e -‘a-!:!], kx 1,” 

We note that S1,. II,.. ('si, N,,, !1{,, are elements of the inverse lxtrices s-1 (u), I)+-' (I(). 

C_-' (u), N_-’ (u), M,“ (u). Elements of +he direct matrices are given by (1.4) and (3.2). 

Applying the inverse Fourier transform LO (3.3), we find t, (J.) y- {LO,, tOz} in the form 

(I'(a. .z) is the incomplete Gamma function, and I'(z) is the Gamma function). 

The vector functi0r.s to* (.r),T,,* (11) irre determined from Z3.7' and (X.4! if we put 'It 

'12 -= q. ‘4, = cl*, A, - c*k. 
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4. we obtain the final formulas to compute the tangential and normal stresses under the 
stamp. we insert the expressions for to(d,To(u),To* (u), found in Sect.3, in the integral re- 
presentation of the solution (2.11) and we use the approximation (1.5) and the relations (1.7). 

The integrals L,(i = 1,2), defined by (2.8), are calculated by residues after having been 

multiplied by the matrices and a number of transformations since the integrands decrease ex- 
ponentially in the lower half-plane of the complex variable ?j and have no branch points. The 
remaining integrals in the solution (2.11) are evaluated by operational calculus formulas. 

Omitting the canputations, we present the general form of the approximate solution of 
the system of equations (1.1). 

Q? (5) = G? (2) -+- x [- i&l (x, zk) elk t E?2 (X, rkj c:2k] 
k=l 

e-R(a-x~ $_B-“{(Q -.z)v~[A~Y (a, Q) - iAty (a, 11~11 + 

(n - .z)yA,Y (- u, ql) + iA*Y (-a, rlz)ll + 

@ (a+%) $ f-P {(n + $‘I [AIY (a, - ql) -+ i A,‘? (a. - q%)] + .+ 
(a + .~)y.-l~~I’(- U. - ql) - iA*Y (-a, - q2)j} 

We obtain the function G?(L) if we replace 

-41, A, rll, II:, K;:, P:,, Pii by 42, -AI, q.z, qn&;, 822, p.:, 

respectively, in GI (5) 
The functions E,,, (x, xk) are determined by the expressions 

E1,(2,Xk)=D1+(a,s,xk)+ &-(-ua,z,zk)t DI'(c.-zs. -ztk) L 
" 

We obtain the fumtions Ez2 (2, xk), E,, (z, zk) by, respectively, replacing in 

El1 (5, Xk), El: !I, XL) sf,z flfa ot, FYjt B:j 

~2, 0, by &, S:'r, D2jI, Eij, Bt> sj, 11,. 

The following notation was used: 

Y (a, q) = r-’ (vZ + l)(B - iq)-%+fla. T,, ~ = -_“? 7 ia 

F* (q, z) = ezacgF (q, Z) t e-za@F (-11, -q 

F(9,x)=~[If(a,rl,s)+f(-a,--,--)l 

(4.1) 
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! ia, '77 r) = F-' (vl + 1) y [v, i_ 1, (B - in)(a -s)t 
Xl,j* (rl~ X) = ""~Xkj* (q, Z) + eimXrj* (-?I. -5) 

ykj* (rl* I)= +'Xkj* (Q, I) - eianXkjf (--?I, -2) 

Xd @I, 2) = (B - i$P0,* (a, q, s) + (B - iq)'~j+(--a, q, s) 

y.?j* (Il* I) = (B - i~)-V'@,'(U, Tl, 5) - (B - itl)-"' 

Oj* (--a, % 4 

0f(a,rl,x) = ts -’ i5jl-y' _iP. (0-x) 

5j + ‘I e ” 11 _ f (a, -- gj. x)] & ‘“;“~~-” eiij (“-z)f (a, cj, 5) 

I 

D$ (a, .z, xk) = (a - .+‘y r-1 (vz + 1) e-B (a-x) m = 1, 2 

SZ5 C57 -%I = i$, idi (B - ipi)v! 0f (a, - pi, P) + C&i (/j - ipi)WDf (- a, - pi, z)] eipt (O-xk), nl = 1, 2 

t)~ = 1,2 

p;\CX, I) is the incomplete Gamma function). 
A packet of programs was compiled by the formulas (4.1) presented above by usiny the 

BESM-6 to compute the contact stresses as well as to determine the unknown vector CC from the 
condition (2.9). 

5. A s an illustration, we consider the plane problem of harmonic vibration of a stampof 
width 20 on an elastic layer of thickness 2h connected rigidly to an undeformable base. The 
stamp adheres rigidly to the layer. The problem is reduced to an equation of the form (1.1). 
The elements of the matrix K(u) in this case have the form 

K,, (u) = '&Q (0, sh 20, ch 211, - o,-'u2sh 20, ch 2o,)A-' (u) 
X,,(U) = '/.& @sh 20, eh 20, - v*-~u~s~ 20, ch &)A-'(u) 
K&I)= - z ((210 --/*".*)(I -ch Za,ch2~,)+ 
a,-~a,-~[2v~-- wz ('/..~>a+ x1*)+ x&a) sh 25, $11 Zs!} A-I(u) 

.$ (u) = ~2 (2~ - x,2) - (218 - il%f + Qxf) ch 25, ch 2% + 

:1-b,-~u~ [?.d - u* (2x>* + x1*) + x:x,” + ‘I~+‘] sh 2~, sh 2a2 
Xl2 = ~lj,'p~l~ (1 + “QQ-', X12 = &+I-', sh- = r/7=Q_ k = I,2 

The quantities fi(X) are taken with the factor 2ph-‘,a is the dimensionless half-w&dth of 

the stamp v,p are the Poisson's ratio and density of the material, and -h>+~ are the Lam& co- 

efficients. 
The elements of the matrix K(u) possess the properties listed above. The matrix func- 

tions 
II (11) = s-l(U)R (U), 

IV(U) 7: R-'(U)S(U) 

are constructed, whose elements are associated with the real elements of the matrices n(=)and 
P-'(U) by the relations (1.2) and (1.6). 

Fig.2 Fig.3 

To construct the approximating matrices, the neutral curves (curves of zero and poles) of 
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the elements of the matrices n(a) and a+ (u) are constructed first. An example Of the distrib- 
ution of the real poles of the elements of the matrix I(U) for v= 0.3 is presented in Fig.1. 

By using Bemshtein polynomials, the functions x,,, (c) are simultaneously approximated by ra- 
tional functions of the form (1.5) with any previously assigned accuracy. The approximation 
of the inverse matrix r'(u) is analogous. The matrix z-l(u) can be obtained directly from 
n(u) but this path will result in an increase in the number of coefficients c~~,c*c, and there- 
fore, the order of the system to determine these constants doubles. To construct effective 
approximate solutions of the system of integral equations (l.l), the parameter B should be 
taken as large as possible. Let us note that this results in an increase in the order of the 
approximating polynomials for a given accuracy of the approximation. For numerical computa- 

tions B =iO was taken. 
A computation of the contact stresses was performed on a BESM-6 by using (4.1) as a func- 

tion of the reduced frequency x2, the Poisson's ratio Y, and the stamp width 2~. 
Graphs of the complex tangential stresses ql(z) are presented in Fig.2 for x* = 1.8, (1 = 5, 

A, = 0, A,= I, Y= 0.3, nI =n,=O and normal stresses y&) for x1 = 1.8, a = 7.5. A, = A, = i, v = 0.3, $ = 
Q = 0 in Fig.3. Graphs of the real part are represented by solid, and of the imaginary parts, 
by dashed lines. 
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